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We shall find the characteristics of the established wave arising in an

gﬁst&ble system which 1s described by the one-dimensional hydrodynamic equa-
on.

We shall prove that for slight supercriticality i-— A, the amplitude of the
ntn harmonics of the wave arc proportional to (A —1i,)¥r,

The equations of hydrodynamics usually have an equilibrium (time independ-
ent) solution. To a stable equilibrium solution there corresponds a laminar
motion of the medium.

The eguilibrium solution depends upon external parameters; as the para-
meters pass through critical values the equilibrium solution becomes unsta-
ble. Nonlinear effects {the interaction of waves with different wave numbers
growing in the unstable system) will limit the growth of the fluctuations;
as a result the system achleves a steady state., In such a steady state elther
there is a continuous spectrum of waves (turbulent motion)[1 and 2], or else
there exlsts one wave with a definite frequencx and wave vector (for example,
the strata [ 3] in a gaseous discharge and the "daiffusion” oscillations in a
strong magnetic field [4]).

Below we shall consider the second case. The steady solution will be cal-~
culated; the stabllity of the steady solution will not be considered. It is
assumed that the starting equations describe the system sufficiently well,
and that it is known from experiment that the steady state of the system is
of the second form.

1. Let the unknown functions x!{t,r) satisfy the autonomous egquations
{not containing explicitly ¢ or x )}

. & a a . .
F&(X), 3f %)=0 Gi=1....n (1.1)
In Equations (1.1) there occur external parameters, the totality of which

will be denoted by i

The equilibrium solution X!, not depending upon ¢ or x , is found from
Equations

Fi=FY(X,0,00=0 (1.2)
844
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In the study of the stability of the equilibrium state let us set
X=X 4+Xe® Ob=ot—kz
After linearizing Equations (1.1) with respect to the perturbations X
we obtaln the system of algebraic equations

Xy’ =0 (1.3)
Here and henceforth, two identical indices, one of which is a subscript
and the other a superscript, will imply summation from 1 to n . In Equa-

tions {1.3) the coefficlents  are known functions of w, %, A and X{1\).

Nontrivial solutions of the equations exist if the dispersion relation is

From the dispersion relation we can determine the complex frequency
w =0 — {4y of each mode as & function of the external parameters and of the
(real) wave number % . Let us assume that we have been ablé to do this and
have established that for certain critical values of the external parameters
Ay the maximal (as a function of the wave number % ) increment of one of
the modes 1s equal to zero, whilst the increments of the other modes are
everywhere negative. If we slightly change the defined direction of some of
the external parameters, then the increment of the "critical™ mode becomes
positive in a certaln interval of values of % , whilst the increments of
the other modes remain negative (in what follows the root of the dispersion
relation p(w) = O , characterizing the "critical” mode, will be denoted by
wy= Q04— ty,). It 18 natural to expect that the steady wave is the result of
the development of oscillations of the unstable mode.

Let us suppose that with steady increase of supercriticality s —\, the
amplitude of the established wave steadily increases from zero (such beha-
vior of the resulting wave with change of the parameter will be called
"smooth"). Then for weak supercriticality many properties of the wave must
be determined by the properties of the unstable mode; in particular, the
wave number and the frequency of the wave must be close to the values ¥k,
and w,, determined in the linear theory from Equations

97, 19k =0, wo =Q, (k) (1.5)

2. Assuming that the maximal increment vy, of the unstable mode is posi-
tive, but sufficiently small (1.e. the supercriticality is weak), let us pro-
ceed to the calculation of the quantities characterizing the established wave.

The established solution obviously has the form
. o .
X'= ¥ X, 0=ot—kz 2.1)
V==00

where the quantities X_, and X, are complex conjugates: X Jj= (X,j)*;
this follows frcm the fact that the quantities X’ are real.
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Substituting (2.1) in (1.1), let us multiply the result by e 8 and
integrate with respect to ¢ from O to 2r . As a result we ottain
an
D, = SF‘e—M D=0 2.2)
)

Equations (2.2) form an infinite system of algebraic equations for the
infinite number of unknowns X,. To solve this system 1in the general case ls
impossible; even the integration in (2.2) often cannot be achieved in an
explicit form.

Now let us make use of the circumstance that for weak supercriticalilty
the ampllitude of the wave is small 1f the oscillations arise "smoothly".
Then the integrals in (2.2) can be calculated if we write down Expressions
(2.1) in the form X’ = Xoj + XJ and then expand the functions F with
respect to the small quantities Jx. (1t is necessary to emphasise that
I # X).

To find the first harmonics Y, , which are the greatest, it 1s sufficient
to calculate only the functions (IJ.,L with u = 0,1,2, retaining only the
quadratic and cublc terms in ). and taking into account in the expressions
for X. only the first and second harmonics

O} = FH (X)) + epXiX =0 (2.3)
O, = ot X, + diXS X )+ X XX =0 (2.4)
@, = fiX,) + g XX} =0 (2.5)

In these equations the coefficlents a,d,...,g are known functions of
w, ¥ and X, ; the tensors b, g can be assumed symmetric with respect to
J and & .

We note that the sum of the subscript indices of the symbols X , appear-
ing in any term of the expressions (Dwﬂ is always equal to u .

Writing I, = X'+ 8x' and remembering that Fot (X!') = 0, we obtain from

Equatton (2.3) (OF 1 60X J)x 0X' + et X /X _JF =0 (2.6)
From the last expression it is clear that &x ~ (r.)2, therefore in the
quantities p,...,p Wwe must set X,= X , in order not to exceed the accuracy

of Equations (2.3) to (2.5); for the same reason in the expansion of the
quantities g wlth resect to 8fr we must retaln only linear terms
ait (X,") = a# (X™) + (9at/ 0X,")x 6X™ @.7)
According to the known rules of linear algebra let us solve the system of
equations (2.5) with respect to X, and the system (2.6) with resect to &x
X = GaX X[k X" =Cu X)X/ (2.8)
Substituting Expressions (2.7) and (2.8) in Equation (2.4}, we obtain
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Of =X/ (@t + P XX H=0 (2.9)

where
Pty = (9af 1 0X,™x Cat + deiGik + bis

The system of linear homogeneous equations (2.9) in X} has a nontrivial
solution 1if

A=laf + P X X | =0 (2.10)
When the nonlinear relation (2.10) is fulfilled, the solution of Equation
(2.9) 18 X = QA; @.11)

Here @ 1s a constant of proportiocality, whilst A,S 1s the co-factor of
the element 4,*, standing in the determinant A at the lntersection of the
Jth column and the pth row (the number of the row p 1is arbitrary).

Now we note that, according to the assumption of “"emooth" excitation,
X{- 0 when A = \,. According to (2.10), the determinant s -~ D as %- O,
and accordingly a =~ D,'# 0, so that from Equation (2.11) we find that Q- O
as k= Ay .

In connection with this we neglect the quadratic terms in the expressions
for 4, , and Equations (2.11) take the form

i__ i
X, = oD, (2.12)
From the last equation it is clear that in the steady wave with weak
supercriticality the phsse relations between the quantities Xﬁ are deter-

mined by the linear theory; the quantity ¢ is none other than the normal
coordinate of the oscillation in the unstable mode.

To determine ¢ let us substltute Expressions (2.12) for x, in the non-
linear dispersion relation (2.10) and expand A in serles with respect to
the small nuantity ¢ = ¢¢*, retaining only terms linear in q (retention
of hlgher degrees would be exceeding the accuracy of the starting equations
(2.3) to (2.5))

.. x !
A=D+Pg=0, P=DPLDS(D)y*, q¢q=QOQ* (2.13)

From Equation (2.13) let us determine the complex frequency w &as a func-
tion of the wave number % and the small positive parameter ¢ ; the solu-

tion will be sought in the form w = w,+ 8w where w, 1s determined in the
linear theory from Equation D(w*) = 0, whilst &w ~g . From Equation
(2.13) we obtain
P
= = e 2.14

b g5, S (aD/am)u, (2.14)
and the expresslion for the frequency takes
the form

0=(Q,— ¢S —i(y,+¢5?) (2.15)

Here and in what follows the superscript
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indizes 1n papentheses (r) and (i) denote the real and imaginary parts of
the corresponding quantity.

Now let us suppose that the wave that becomes established in the system
1s of such amplitude that the maximum nonlinear increment T = 7Y, + 95“)
as a function of the wave number % vanlshes (Fig.l); the value % , for
which y = 0, 1s in fact the wave number of the established wave, whilst
the corresponding value w(k) is the frequency of the wave., This supposition
arlses in connectlion with the fact that the value of the parameter qg » for
which the maximum nonlinear increment 1is equal to zero, 1s a qualitatively
unique choice from among the other values of ¢ .

According to supposition made, the quantities ¢ and x of the estab-
lished wave must satisfy Equations

=1, + ¢85 =0, oy [0k =0 (2.16)

The wave number willl be sought in the form Xk = X,+ 8% , where &k ~ g
and the quantity &k, is determined 1n the linear theory from Equation
3y,/3% = 0 ; then Equations (2.16) take the form

Yo+ 08" =0, 7,78k + ¢(Sy)" =0 (2.17)

Here the primes denote differentiation with respect to % , whilst the
subscript O shows that the correspondiig quantity 1s taken when x = j,.

Ky From the first equation we find that

Y

9= To/Sow-
Since g ~'yo, then in Expression (2.14) for §
y we must set o, (k) = Q, (k) = w, (the reten-
' tion in the expression for § of terms ~ y,
would exceed the accuracy). Since y,> 0 and,
(1} ’ obviously, also g > O, then the solution exists
o P> if So(i) < 0. The last lnequality is a sufficient

condition for a "smooth" onset of oscillations.

%

Fig. 2

The deviation #&x 1s determined from the second of Equations (2.17),
whilst the frequency w comes from Equation (2.15); accordingly, we can
write down

g=—1/8", 1 sP<0 (2.18)
Ok = — ‘I(So,)(i)/']’o” (2.19)
® = 0, -- (09, / 0k)g 0k — ¢S, (2.20)

The expressions for ¢ and (5/6. obtained are such that for the fulfilment
of the condition (< 71, <L — SOU) the linear increment would be depicted
by the parabola Te = To + YaTo" (k — ky)?, whilst the function S% would
be the straight l1ine SV =38 @ L (5, (k — k) (Fig.2 ; the stralght line
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¢S™ 1s shown by the bold 1line) (*).

3. The first harmonics X, are determined by Formula (2.12), in which the
cofactors z)p‘ are evaluated when w = w, and % = k, and the quantity ¢ 1s
determined by Equation (2.18) (Equation 2.18 determines only the modulus of
the complex amplitude, and therefore the steady solution turns out to be
determined .only to the extent that its phase remains arbitrary).

If the first harmonics are known, then the second harmonics are found from
Equations (2.5), which are linear in r,, and have the form X = #,'¢? where
the quantities H, are expessed in terms of the coefficients f, g in the
expression for &, and the already known quantities H, = D,,J (according to
Expressions (2.8) and (2.12), H,' = GiD/D.F).

In a similar way we can find the higher harmonics if all the harmonics of
lower orders are known. For example, the third harmonics Y, are expressed
in terms of JX,, X, from Equations ¢&,= O , in which enter terms of the form
Xss XaXys XXX, (these terms arise, respectively, from terms of order .,
X2, x> 1in the expansions of the starting equations with respect to the
quantity x.). Having solved Equations &, =0, for x, we obtain r,'=pg,'Q3,
where the quantities pz, are expressed in terms of the already determined
quantities pg,, H, and the coefficients in the expressions for &, .

In general, the harmonics X, will be determined from Equations

V= ) XS+ D i XX XD =0 (3.1)
Here the sum 1s taken over all possible combinations of the members .,
satisfying the conditions : vy + ... Fv,=v 1< v, .. ., VsV the
coefficients h are taken at k= ko, W = O, Xo = X. We notice that in
Equations (3.1) there are contained terms of the form (X,)’, arising from
terms in the expansion of order (X~)v; the terms of the expansion with res-
pect to x_ of higher order do not contribute to Equations (3.1).

It was noticed above that X — Q"H,,j if v { 3. Let us assume that this
relation 1s true for all values of vy , including v = uy—1 , and the coef~
ficlents H,, ..., H, , already found; then with the help of Equation (3.1)
it is not difficult to see (taking account of the condition v, +...+v,= v )
that 1t is true also for v =y (and consequently for all v ). Moreover
the coefficlents HpL are expressed 1n terms of the already determined coef-
ficients H,, ..., H, , and the quantities » 1in Equations (3.1) with vy =y.
By means of the estimate |X,|~| Q|'"' 1t can be established that the ratio
of the omitted terms in the expressions for & to those retained has the
order of smallness g4 or higher than ¢ ; accordingly we can write

*) If the unstable mode 18 aperiodic, i.e. w,= 0 and moreover (3Q4/0K) =S = 0,
then a motion which 1s independent of t‘ime becomes established in the system.
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X)=QH +0(l, v>0 S= (X)) 3.2)

Thus, the vth harmonics of the established wave are proportional to TDV“.

4, We shall now express in expliclt form the amplitudes of the harmonics
of the eatablished wave in terms of the supercriticality ¢ = A—1\, (here A
is a certain fixed point of the surface of critical parameters; this surface
is given in the space of the parameters by the equation vy,(x) = 0},

The functions p in (1.1) are analytic functions of thelr arguments and
the external parameters ) , therefore the quantities X, v,, k4, w,, and
hence all the quantities characterizing the wave, are analytic functions of
X . For sufficlently weak supercriticality ¢ we can therefore write down
(remembering that y,= O when i = 1,)

To = (d1o/ dA), & (4.1)

This expression (*) glves the possiblility of determining how to change
the external parameters in order to secure that vy,> 0 .

Let us substitute Expression (4.1} for vy, in Formulas {(2.18) and (3.2)
for (J and X,, setting A = X, in the expressions for § end x (it is
assumed that the quantities w, (L), ¥,()), X(1) have already been substitu-
ted in the expressions for vy,, S, # ); as a result we find (**) (under the
condition SV (L)< 0), that X, ~ e'e,

In the expression for the frequency it 1is necessary to make the substitu-
tion @y (A) = wy (Ay) + (dwy/ dA),e; the change of frequency (dwo/ dh) e
is not connected with the presence of oscillations and is valid for a varl-
ation ¢ in any direction. A similar substitution 1s effected for k,(1).

Hence, taking account of the fact that y 1s real, we find that

(" 13 (1)
8DV |dw 8D (8&) (5.1)
D" D

ap(" @aDp® ap 1
) D oo 0,

D" S+ 1= a0 |

8, The equation D{(w) = O is often difficult to solve and 1t 1s then
necessary to find w approximately.

Let us expand D == D 4+ iDM with respect to the small quantity vy and
restrict ourselves to the linear term

D(Q—if)=D(Q)— iy (8D / de)g =0

*) The quantity ¢ 18 to be understood &as a vector, whilst derivatives
with respect to . &re tensors; written out in detail, Eguation (4.1), for
example, has the form
6“{0\ 1, 4™
To == ('0—7»; ei—kf(axﬁm)*eiai—%—...

*

**) PFrom the relation X,~(Ve) it follows that we can seek the steady
solution directly in the form of series with respect to Ve.
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The first equation determines the frequency  ; substlituting the value
found for 0 in the second equation (5.1), we obtain y (¥).

When A = ), we have y,= O ; hence also from (5.1) 1t follows that 1,
ko (A\y)s wo(r,) satisfy Equations (**)
. r) pW
D" =9, p® —o, 9(D", D)
A i@ k) =0 (5.2)

From (5.1) and (5.2) we obtain

Yo aD DM 180 DY de
(FF)* = oo D, D,® (5.3)
where
a ,dX 8
D, =55+ %% 5% P
Now from (2.14), (2.18), (4.1) and (5.3) we have
_ aD™ [ow aDW [ dw| |aD" /o BDW | 0|
1=—e\pm D,® pm p (5.4)

The quantities 1\, w, k¥ 1in the right-hand terms of (5.3) and (5.4) are
?qua%,(igigectively, to Ay, wo(r,), %, (1,) andmre found from Equations
5.2 .

6. Let us consider the question of the nonunigue choice of the tensors
b, g, and consequently also P (Equations (2.%4), (2.5) and (2.10)). The
nonuniqueness is connected with the fact that, for example, the actual sum
giinix® (which 1s obtained in the calculation of §.) uniquely determines
only the tensor g symmetric with respect to f and x (if we add to it
an arbitrary tensor which is antisymmetric wlth respect to s and x , the
sum is not changed). In order that the results obtained above should not
depend upon the cholce of the tensors b2, g, P, 1t 1s necessary, as follows
from (2.9), (2.13) and (2.1%), that the equation p,’p *= p,*D ! should be
satisfied under the condition w = w, . The equation %111 indked be satis-
fied, since D(w = 0 and for an arbitrary determinant p the following
identity holds (81

i pk
D{ Dy

i N
=DDj (—1)
. k p
DPJ DP

where ¥ 1is the parity of the permutation (Z:),

*) It can happen that in the expression for ( there appear terms ~ y?
(for example, for the ordinary equation z"-—-hx’—t z =0 wWe obtain

D=1 _-—0?— ioh and according to (5.1) we have 0°=1-— 3n?, vy =3h); these
must be discarded, in order not to exceed the accuracy of Equations (5.1).

*#%) The critical parameters (if they exist) for the other modes can like-
wise be found from (5.2).

##%) The derivatives (2w,/d\), (dky/d).) when 1\ = ), also are expressed in
terms of D (the corresponding expressions are not reproduced for reasons
of space economy). If Equations (1.1) are ordinary, then from the first
equation (5.1) we obtain, taking account of (5.2)

(dog /dM)y = 19D | 80|~ [D;‘(r) 8D { da) + Dl(i) (8p® / 30)]
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7. The condition of "smooth" excitation is S, (A 0; if it 1s ful-
filled, then for sufficlently slight supercriticgliéy’kgg ahplitude of the
wave 1s small, and 1ts shape 1s close to sinusoldal, since A;,~,8Vﬂ,

c by éb“)(h*):>0, then the oscillations arise "ab-
ruptly”. Let us suppose for simplicity that the
state of the system 1is determined by two parameters
ﬂW Fig.3). Suppose that y,= O on the curve 4C

Yo> O 1n the region 1) and S5,¥ >0 on the segment
BC . I1f the parameters slowly change along the
] curve ] , then jumps in amplitude of the estab-
lished wave will take place at the intersection of
the curve BC and a certain curve (the broken 1ine
in Fig.3) in the region where Yo< O . When the
point X 1lles in region 3, and oscillations are
initially absent, then they can be excited by an external perturbation if the
amplitude of the perturbation ¢ exceeds a certain threshhold value Q

From Equation T =T1o-+SWg 4+ .. — 0 it follows that [Q, |* — — 1,/ Solt)
when y,—-—0 . 0

Fig. 3

The type of hysteresis of the jump in amplitude can be explained in the
following way. In the reglon 3 the increment y,< O and therefore the fluc-
tuating perturbations do not grow, After crossing into region 1 we have
Yo=+0 , but the nonlinear increment T ==Toﬁ-s§”q increases wlith the growth
of g, since.S&” 0. Growth of the perturbations may be limited by non-
linear terms of higher order; since they are taken into account, the incre-
ment vy will contain terms which are nonlinear with respect to ¢ and there-
foig ghere may exist positive solutlions of Equation Y(q =0, even 1f
Tos U0 .

On deeper penetration into the region y,> O (region 1 in Fig.3) the
amplitude of the wave increases, and the oscillatlions assume a relaxational
character; moreover, there 1s the possibility of Jjumps in the wave amplitude
of a hysteresis type (examples of such jumps for systems described by the
regular equations are to be found in [5]). In addition, other modes may
become exclted; because of nonllnearity of the system oscilllations of 4if-
ferent modes may synchronize., Certain of the newlx excited modes may have
negative increments vy, . Such modes are exclted abruptly”, and moreover
the "external perturbation for them is the wave exclted at a smaller super-
criticality. As usual, in the case of "abrupt” excitation, the regilon of
emergence of oscillations of such modes must be wider than the reglor or
origin.

If the oscillations appear smoothly, then we can always choose such a
small supercriticality that the other modes are not exclted (not only in the
linear approximation, but even in the presence of an extablished oscillation
of an unstable mode). This case was in fact considered above quantitatively

*

8. All the results obtained above are valid for & system with a finite
number of degrees of freedom, when Equations (1.1) are ordinary.

Since Equatlons (1.1) are real and are polynomlals with respect to the
differential operators, the coefficients of the equation D = O which is
algebraic with respect to (iw) are polynomials with respect to (--1%) with
real coefficients. On replacing % by (—k) these polynomlals become complex
conjugates, and therefore the following relationship 1is true:

o (— k) = — o* (k) 8.1)
from which it follows that the increment v(x%) 1s an even function, whilst

the frequenfx’ (0 1is an odd functlion, and, generally speaking, discontlnuous
at k =0 . )

*) The cited qualitative chart of the dependence of oscillations on the
supercriticality clearly shows, for example, many lines of strata 1n gaseous
discharges.

'*) The relation (8.1) reflects the fact that the direction of propagation
of a wave is determined by the physical properties of the system, but not by
choice of direction of the coordinate axls of reference.
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If /82 =0, k = 0, then to each oscillatory mode there corresond two
roots w, and wg such that wy=—w,*.

It can be shown that if the condition of "smooth" excitation is satisfied,
then for sufficlently small supercriticality the steady solution of the ordi-
nary equations is stable {in particular, the solution Y = X when A = )\,
is stable),

9. In conclusion let us notlice the character of the nonlinear effects
taken into account.

‘The first term in Expression (2.9) for p,l 1s related to the effect of
change of "background” under the influence of " the oscillation, Yo #X (only
thig effect is taken into account in the quasilinear method). The second
term 1s related-to the effects of coherence. The third term describes the
proper” interaction of the wave (only this effect is taken into account.in
the methods of Poincaré and Van Der Pol in their theory of oscilllations).

Depending upon the form of the actual system, this or that nonlinear
effect may be predominant; in the general case in finding the steady solu-
tion it is necessary to take into account all three effects.

10, Here we shall introduce two examples of finding steady solutions.

Let us consider Equation
— @ +a)+zth+az) -b(x)2=0 (10.1)
The equilibrium solution 18 X = O ; after linearizing with respect to
the perturbation 1‘18{“" we obtain

D= —1+ioh=0
Hence
Y=1h Q=V1-—R

The critical value of the parameter is h = 0 ; the equilibrium 1s unsta-
ble when A > 0 . To an accuracy of terms ~h we have (Q =1 ,

Let us seek the solution in the form

x:xo+x~=xo+2z‘,ei"° (v=0, 6 =ot)
v

After substituting for x in Equation (10.1) we obtain

D, = — zy + 2b02rx_;, =0 (10.2)
D, = (02— 1) 2y + io (hay + axax_y - azyz,) + dbolxex_, = 0 (10.3)
D, = (4o? — 1) z, + i hzy + azy?) — boz,2 =0 (10.4)

In the coefficlents in the nonlinear terms we can at once set K = 0 ,
w =1 . From (10.2) and (10.4) we find that

O0x = xy = 2bxx_y, T4 = Y3 (b — ia) =%
substituting these expressions in (10.3), we obtain
@, [z, =D + g (sa? + 4p? = iab) = O.
Hence, taking account of the ?.cf that 3p/3w = 2 and that d40/dh = O, when

h =0, we obtatn g = — ¢/ SY —h/ab, ® = 1 — Yyq (a% + 5%). The condition
of existence of the solution 1s ab < O ,

Equation (1C.1) after the substitution x = yy reduces to the form
¥ Ty =70Cy +ayy -+ b)) (10.5)
The equation of the form
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Y’ +y=vy, 7 (10.6)

where vy 18 a small parameter, can be solved by the methods of Van Der Pol
a.n:thincaré [T]). Setting y = ¥ cos ¢t we have according to the first
metho an

. 1
K =v4(K), AWM= —57\ f(Kecosu, — Ksinu,0)sinudu (0.7
0
Applying (10.7) to (10.5), we obtain

K =K (10.8)

whence foilows the incorrect conclusion that Equation (10.5) has no steady
solution except the equilibrium solution ¥ = 0 .

Equation (10.5) can be solved by the method of averaging [5]. For this
we set y'= > in Equation (10.5) and introduce the new unknowns ys=r cos g,
z=rs8ine . Expressing p- and ¢ in terms of r and ¢ and taking
the ratio re/y*, we obtain an equation of the form dr/de = 1f* (r, @, 1);
Solving this by the method of averaging, we obtain, in the second approxima-
tion dr/dop = 1r (1 + Yy1abr?) with respect to vy .

The sveady solution exists if ab< O , and has the form r®=—2/yad ; if

we return to the variable x and write down the solution in complex form,
then we arrive at the expression for g obtained above,

The example considered 1s typical in the theory of oscillations. The sim-
plest systems in . hich there exist steady oscillatlons which are almost
harmonic, are described by Equations [7]

=g (z, ¥) (10.9)

This equation can be reduced to the form 210.6). The equilibrium solutlon
of Equation (10.,9) is found from Equation ¢ x,o) = 0 , We shall assume that

= O (this can always be achleved by the substitution x =y + x*) . Assum-
}ng that the amplitude of the oscillation is small, let us expand 10.9) in
a serlies with respect to x and x*

. [0 %\ . d"g o .3y
" _<a—)x:($.—)x+n§l-n!—, d”gz(ngrxb—;)g (10.10)

Here the derivatives of are taken when x = x*= 0 , Perturbations of
the equilibrium state have tge character of oscillations if for A = Xy (when
dg | 9z = 2y = 0) the inequallty dg |0z = — 02 < 0 18 satisfied. We shall
assume that w» = 1 (this can always be achieved by the substitutlon t=cw7t*);
after the substitution x = yy we obtain from (10.10) (the increment vy 1s
assumed small)

.. . _ 1 a . a
vy =172y + g) + §2T" tgs gnzg(y%JFy %-—)g (10.11)
n

The abbreviated equation (10.7) for the starting equation (10.11) has the
form (10.8), since the quadratic terms appearing in g, do not give contri-
butions to the expression 4 (x)

In order to solve Equation (10.11) by the method of averaging, it is
necessary to revert to the second (or higher) approximation {the equation of
the first approximation coincides with the equation obtained by the method
of Van Der Pol, and has the form (10.8)).

when Equation (10.9) does not change on replacing x by (—x), 1.e.
when g(—x, —x') = —g(x, x*) , the terms with even n are missing from
the expansion (10.10); 1in this particular case we can make the substitution

x = /Yy and obtain
VY =12 +g)t+ Y tme (10.12)
k>1
With the help of (10.7) we find the steady amplitude
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g Bg \-1
2 = —9 _— 5
K 16 (6126::' + i) (x')a)
if the expression in brackets 1s negatlve.

Equations (10.9) not changing with the substitution of x by (— x) are
remarkable in that their periodic solutions (if they exist) do not contain
the even harmonics. Here we show only that the even harmonics are absent
from oscillations of sufficiently small amplitude, when the expansion (10.10)
is valid (not contailning terms with even n 1n the specified case). Let us
substitute in (10.10) the series

o] 110
= e
z 2 ze
p=-—0g
Then the differential 4%g gives a contribution to the expression @,
in the form of the terms ¢Z,. .. Z,,, where v, + ...+ v, =wv,and ¢ 1s a

certain coefficient depending on w and XA , but noton x . If v 1s even
but »n 1is odd, then among the members v,,..., v, is at least one even num-
ber. Thz2refore for even values of v the equations (Dv = (0 will be rigor=-
ously satisfled i1f we set all the even harmonics equal to zero.

Let us consider the equation (¥)
2"+ z=22 (h — 2% (10.13)

The dispersion relation D = O was considered in the first example. We
shall seek the solution in the form

3=$o+2:¢'ve{"° v=£0, 6 =)
v

In Equation (10.13) there are no quadratic terms in x , therefore from
the equations ®,=0, P, =0we find dz =zy=0,2,=0. For @, we have
D, =z, (D — ivg) = 0 (¢ = z.1).

Hence

P=(—i0)hg=—1 =—1i, g¢=h, =1, Jdo=0

For the calculation of higher harmonics =, we need to construct the
expression for @, in accordance with Equations (2.2) and (3.1). Integra-
tion of the linear terms 1s easily accomplished.

Let us first write down the nonlinear term in the form 222" =1/, (2%)"; the
integral an

do
I, = S z"e 8 o (z = Z a:»ei“e)
o u

is calculated after first of all raising the series for x to the degree
according to the binomial rule

(2,)™ (zv.)""s

I, = nlZ z=>)) O T (10.14)

Here the sum is taken over all the numbers v (among which none are the
same) and the positive numbers n,, satisfying the conditions

nv‘+...+nv,=n, vlnv|‘+... +vsnvs=n

In the case under consideration n = 3 . Now we have

D, = (oW — 1) 2, + iov (hz, — 22') =0

*) The substitution x = /Rx* reduces this equation to the equation of Van
Der Pol.
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where ‘ differs from the sum in (10.1%) in that the numbers vy , according
to (5.1), satisfy the supplementary condition 1 < %y, ..., v,<v. The coef-
ficlents in the expressions @ must be taken when \ = i, (in the given
case when h =0, w =1 }; therefore

=3 2iv [ (V¢ — 1) (10.15)

Equation (10.13) is not changed by the substitution of x by (- x) and
therefore we can at once set the even harmonics equal to zero. For the odd
harmonics we obtain from (10.14) and (10.15)

zg = Ygiz3, xg == §/y iz 2rs
Zy = T/gy i (T1258 + z42?)
zy = Yyl (Yexs® + 232975 + YoziPxy)

The author thanks A.A. Vedenov for guidance and M.A. Leontovich for dis-
cusslon of this paper.
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