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We shall find the characteristics of the established wave arising in an 
unstable system which is described by the one-dimensional hydrodynamic equa- 
tion. 

We shall prove that for slight supercriticality 
ntn harmonics of the wave arc proportional to 

X - h* the amplitude of the 
(k -A,)@n . 

The equations of hydrodynamics usually have an equilibrium (time lndepend- 
ent) solution. To a stable equlllbrlum solution there corresponds a laminar 
motion of the medium. 

The equilibrium solution depends upon external parameters; as the para- 
meters pass through critical values the equilibria solution becomes unsta- 
ble. Nonlinear effects (the interaction of waves with different wave numbers 
growing in the unstable system) will limit the growth of the fluctuations; 
as a result the system achieves a steady state. In suoh a steady state either 
there is a continuous spectrum of waves (turbulent motion)[l and 21, or else 
there exists one wave with a deflnlte frequency and wave,,vector (for example, 
the strata [3] In a gaseous discharge and the diffusion oscillations in a 
strong magnetic field (43 ) . 

Below we shall consider the second case. The steady solution will be cal- 
culated: the stabllits of the steady solution will not be considered. It is 
assumed-that-the star&g equations describe the system sufficiently well, 
and that It is known from experlment that the steady state of the system Is 
of the second form. 

1. Let the unlcnown functions xJ(t,$) satisfy the autonomous equations 

(not containing explicitly t OF x ) 

Fi(Xf, -$ , &) = 0 (4 j= 1,, . . . R) tw 
In Equations (1.1) there occur external parameters, the totality of which 

will be denoted by 

The equilibrium 
Rquations 

A . 

solution X2, not depending upon t OF Y , is found from 

F’ E F’(Xi, 0, 0) = 0 (1.2) 

844 
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In the study of the stability of the equilibrium state let us set 

Xi = Xj + X,@, e=ot--ks 

After llnearlzlng Equations (1.1) with respect to the perturbations X, 

we obtain the system of algebraic equations 

Uj’Xlj = 0 (1.3) 

Here and henceforth, two Identical Indices, one of which Is a subscript 

and the other a superscript, will Imply summation from 1 to n . In Equa- 

tions (1.3) the coefficients c are known functions of UI, k, A and X(X). 

Nontrivial solutions of the equations exist If the dispersion relation Is 

fulfilled 
D+_zj’~=O (1.4) 

From the dispersion relation we can determine the complex frequency 

I# =n - ty of each mode as a function of the external parameters and of the 

(real) wave number k . Let us assume that we have been abld to do this and 

have established that for certain critical values of the external parameters 

A, the maximal (as a function of the wave number k ) Increment of one of 

the modes Is equal to zero, whilst the Increments of the other modes are 

everywhere negative. If we slightly change the defined direction of some of 

the external parameters, then the Increment of the “critical” mode becomes 

positive In a certain interval of values of k , whilst the Increments of 

the other modes remain negative (In what follows the root of the dispersion 

relation D(U) = 0 , characterizing the “critical” mode, will be denoted by 

u*= n*- tY*) - It Is natural to expect that the steady wave Is the result of 

the development of oscillations of the unstable mode. 

Let us suppose that with steady Increase of supercrltlcall.ty A-1, the 

amplitude of the established wave steadily Increases from zero (such beha- 

vior of the resulting wave with change of the parameter will be called 

“smooth”). Then for weak supercrltlcallty many properties of the wave must 

be determlned by the properties of the unstable mode; In particular, the 

wave number and the frequency of the wave must be close to the values k,, 

and cu,, determined In the linear theory from Equations 

dy, 1% = 0, 00 = a&c, (1.5) 

2. Assuming that the maximal Increment y. of the unstable mode is posl- 

tlve, but sufficiently small (I.e. the supercrltlcallty Is weak), let us pro- 

ceed to the calculation of the quantities characterizing the established wave, 

The established solution obviously has the form 

(Z-4) 

where the quantities X_, and X, are complex conjugates: X_,j = (Xvi)*; 
this follows frcm the fact that the quantities X’ are real. 
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Substituting (2.1) In (l.l), let us multiply 

integrate with respect to 0 from 0 to & . 
2x 

the result by emipe and 
As a result we obtain 

api F s de F’e-W _ = 0 
2n (2.2) 

0 

~UltlOnS (2.2) form an Infinite system of algebraic equations for the 

infinite number of unknowns X,. To solve this system In the general case is 

impossible; even the Integration in (2.2) often cannot be achieved in an 

explicit form. 

Now let us make use of the circumstance that for weak supercriticality 

the amplitude of the wave is small if the oscillations arise “smoothly”. 

Then the Integrals ln (2.2) can be calculated If we write down Expressions 

(2.1) in the form Xi = Xi + X,’ and then expand the functions F with 

respect to the small quantities X_ (It Is neceaacrry to emphaslae that 

x, # X1. 

To find the first harmonica X,, which are the greatest, It is sufficient 

to calculate only the functions mp with cc - O,l, 2, retaining only the 

quadratic and cubic terms In X, and taking Into account In the expressions 

for X, only the first and second hqrmonlcs 
. . 

(Do’ s F,’ (X0’) + c$X~~X_~~ = 0 (2.3) 

@,i s a,‘Xj $ d,(XbX_,’ + b&XjX,kX_,I = 0 (2.4) 

CD; E fiXi + gj’,X,jX,K = 0 (2.5) 

In these equations the coefficients U,b ,...,Q are known functions of 

I.U, k and X,, ; the tensors b, 0 can be assumed symmetric with respect to 

j and k. 

We note that the sum of the subscript Indices of the symbols X , appear- 

ing In any term of the expressions (DILi, Is always equal to CI l 

Writing X0’ = X1+ bX1 and remembering that FOL(XJ) = 0 , we obtain from 

J3quatlon (2.3) 
(dFo’/ 8x0’)~ 6X3 + cj:X:X_,k = 0 (2.6) 

From the last expression it is clear that 6X - (X,)‘, therefore in the 

quantities b, . . .,g we must set X,,- X , in order not to exceed the accuracy 

of Equations (2.3) to (2.5); for the same reason In the expansion of the 

quantities 0 with resect to 6X we must retain Only linear terms 

According to 

equations (2.5) 

Substituting 

aj’ (X0”) = Uj’(X”) + (dajv ax,“), 6Xrn (2.7) 

the known rules of linear algebra let us solve the system of 

with respect to Xa and the system (2.6) with resect to bX 

X,P = GjlX:X,I’, 6X” = Ckr”X,‘X_,’ (2.8) 

&presslons (2.7) and (2.8) In Equhtlon (2.4), we obtain 



where 

@)1’ E X,j (Uj( + Pj:lX:X_,‘) = 0 (2.9) 

The system of linear homogeneous equations (2.9) In Xt has a nontrivial 

solution If 
A E 1 ~j’ + P$lX,kX_, 1 = 0 (2.10) 

When the nonlinear relation (2.10) 1s fulfilled, the solution of Equation 
(2.9) is X,i = QA; (2.11) 

Here Q is a constant of proportloallty, whilst A,$ is the co-factor of 

the element ArP , standing In the determinant A at the intersection of the 

jth column and the pth row (the number of the row P Is arbitrary). 

Now we note that, according to the assumption of nsmoothlt excitation, 

X/- 0 when A + k+. According to (2.10), the determinant A - D as $- 0, 

and accordingly A,' - D, J# 0, so that from Equation (2.11) we find that Q- 0 

as i-x,. 

In connection with this we neglect the quadratic terms in the expressions 

for AD' , and Equations (2.11) take the form 

Xf = QD; (2.12) 

From the last equation It Is clear that in the steady wave with weak 

supercriticality the phase relations between the quantities X,'are deter- 

mined by the linear theory; the quantity Q Is none other than the normal 

coordinate of the oscillation in the unstable mode. 

To determine 0 let us substitute mresslons (2.12) for XL In the non- 

linear dispersion relation (2.10) and expand A in series with respect to 

the small quantity p = QQ*, retaining only terms linear In 4 (retention 

of higher degrees would be exceeding the accuracy of the starting equations 

(2.3) to (2.5)) 

AsD+Pq=O, P = D:PjilDpk (Dp’)*, q= QQ* (2.13) 

From Equation (2.13) let us determine the complex frequency UJ as a func- 

tion of the wave number k and the small positive parameter p ; the solu- 

tion will be sought In the form w = w,+ bc where UJ,, Is determlned In the 

linear theory from Equation D(IJJ,) - 0 , whilst ~IJJ _ p . From Equation 

(2.13) we obtain 

80 = - qs, s = (&-& (2.14) 4 --- Ho M 

and the expression for the frequency takes n 

the form 

o=(s-Q-- qS”‘)- i (7 t + q@‘) (2.15) B &(A* 
U(n) 

Here and in what follows the superscript x(A) 

Fig. 1 
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lndlses In papentheses (r) and (t) denote the real and imaglnary parts of 

the corresponding quantity. 

Now let us suppose that the wave that becomes established In the system 

Is of such amplitude that the maximum nonlinear Increment r s rr + QS(~) 

as a function of the wave number k vanishes (Flg.1); the value k , for 

which y = 0 , Is ln fact the wave number of the established wave, whilst 

the corresponding value u(k) Is the frequency of the wave. This supposition 
arises in connection with the fact that the value of the parameter q , for 

which the maximum nonlinear increment is equal to zero, Is a qualltatlvely 

unique choice from among the other values of CJ . 

According to supposition made, the quantities p and k of the estab- 

lished wave must satisfy Equations 

r -= r* + Q$L (-j - , ay[ak= 0 (2.16) 

The wave number will be sought In the form k = ko+ bk , where bk - q 

and the quantity k,, Is determined In the linear theory from 4uatlon 

aYJak = 0 ; then Equations (2.16) take the form 

70 + @/) = 0, y,"6k + q (So’)(‘) = 0 (2.17) 

Here the primes denote differentiation with respect to k , whilst the 

subscript 0 shows that the correspond!:Ig quantity Is taken when k = k,. 

From the first equation we find that 

9= - ~o/sQ? 

Since p -'yO, then In Expression (2.14) for S 

we must set O, (k,,) = 52, (k,,) = to,, (the reten- 
tion In the expression for S of terms _ y,, 

would exceed the accuracy). Since yO> 0 and, 

obviously, also p > 0 , then the solution exists 

If soti) < 0. The last Inequality Is a sufficient 

condition for a 'smooth" onset of oscillations. 

The deviation Ok Is determined from the second of ~Equatlons (2.17), 

whilst the frequency UI comes from Equation (2.15); accordingly, we can 

write down 

9= - To / sc@), if S,(i)<0 (2. IS) 

6k = - q (So’)‘” / r/ (2.19) 

0 = w. -t (a?, / ix”), dk - qso(r’ (2.30) 

The expressions for q and 6h obtained are such that for the fulfllment 

of the condition 0 < ro(( - scti' the linear Increment would be depicted 

by the parabola rr = rP f 'jqrOn (k - $)‘, whilst the functioh s ") would 

be the straight line ,!?I)= s,,@) -j- (so')(') (k - k,) (Fig.2 ; the straight line 
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@i) Is shown by the bold line) ("). 

3. The first harmonics x, are determined by Formula (2.12), in which the 

cofactors D, 'are evaluated when UI = UI~ and k = k. and the quantity Q ls 

determlned by Equation (2.18) (Equation 2.18 determines only the modulus of 

the complex amplitude, and therefore the steady solution turns out to be 

determlned znly to the extent that Its phase remains arbitrary). 

If the first harmonics are known, then the second harmonics are found from 

Equations (2.5), which are linear in xl, and have the form Xi = HO'Qa,where 

the quantities Ha are expessed in terms of the coefficients .I, 0 In the 

expression for ep and the already known quantities H,Iz DP' (according to 

Expressions (2.8) snd (2.12), H2‘ = Gj~DpjDp”). 

In a similar way we can find the higher harmonics If all the harmonics of 

lower orders are known. For example, the third harmonics X, are expressed 

In terms of x,, xp from Equations e5= 0 , In which enter terms of the form 

&, XaX,, X,X,X, (these terms arise, respectively, from terms of order ,L, 

x,', x-S in the expansions of the starting equations with respect to the 

quantity X,). Having solved Equations 'P, = 0,for x3 we obtain xaJ= K~JQ=, 

where the quantities & are expressed In terms of the already determined 

quantities H,, Jfn and the coefficients In the expressions for @3 . 

In general, the harmonics X, will be determined from Equations 

(3.1) 
Here the sum Is taken over all possible combinations of the members V! 

satlafylng the conditions : VI -b . . . f V, =V, I\< VI, - - -9 %<% the 

coefficients h are taken at k=kc, w =mc, X,=X. We notice that in 

Equations (3.1) there are contained terms of the form (Xl)', arising from 

terms In the expansion of order (X,)“; the terms of the expansion with res- 

pect to 1, of higher order do not contribute to Equations (3.1). 

It was noticed above that .xu’= Q,H,’ If v < 3. Let us assume that this 

relation Is true for all values of v , Including v = u-1 , and the coef- 

ficients H,, . . .? HP_, already found; then with the help of Equation (3.1) 

It is not difficult to see (taking account of the condition v,+...+v,= v ) 

that It IS true also for v = ,J (and consequently for all v ). Moreover 

the coefficients H, are expressed ln terms of the already determined coef- 

ficients H,, . . ., HP_, and the quantities h in Equations (3.1) with v =v. 

BY means of the es'tlmate 1X,( -1 QI”’ It can be established that the ratio 

of the omitted terms In the expressions for # to those retained has the 

order of smallness p or higher than 4 ; accordingly we can write 

*) If the unstable models aperiodic, I.e. w = 0 and moreover (aQ&W =So(') = 0 
then a motion which Is Independent of t?me becomes established In the systgm. 
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x,j = Q’ [H,j f O(q)], v>o; x-j = (x:1* (3.2) 

Of 

is 
is 

Thus, the vth harmonics of the established wave are proportional to ~O'/av. 

4. We shall now express In expl.1cd.t form the amplitudes of the harmonics 

the established wave in terms of the supercriticality E = A--& (here x+ 

a certain fixed point of the surface of critical parameters; this surface 
given in the space of the parameters by the equation yo(li) = 0). 

The functions F In (1.1) are analytic functions of their arguments and 

the external parameters x , therefore the quantities X, vat k,, woj and 

hence all the quantities characterizing the wave, are analytic functions of 

A . For sufficiently weak supercriticality o 

(remembering that vo= 0 when X = X,) 

This expression (*) gives the poselblllty of 
the external parameters in order to secure that 

we can therefore write down 

(4*1) 

determlnlng how to change 

YO’O ’ 

Let us substitute Expression (4.1) for ve in Formulas (2.18) and (3.2) 

for Q and Xv, setting X - X* in the expressions for S and fl (it is 

assumed that the quantities o,(X), h(x), X(x) have already been substltu- 

ted in the expressions for yor St H ); as a result we find ("'1 (under the 

condition S,@ (h,)< O), that X, - E ‘I ay. 

In the expression for the frequency it 1s necessary to make the substltu- 

tion o0 (A)= 00 (A,) + (~,/+*a; the change of frequency (d~)~/dh).+e 

is not co.nnected with the presence of osclllatlons and 18 valid for a varl- 
ation E In any direction. A similar substitution is effected for k,,(X). 

Hence, taking account of the fact that v Is real, we find that 

3. The equation J.)(e) = 0 is often difficult to solve and it is then 
necessary to find UJ approximately. 

Let us expand D =DfFf + iDti) with respect to the small quantity y and 
restrict ourselves to the linear term 

D (8 - ir) E D (9) - ir (aD ,’ aa), = 0 

*) The quantity E is to be understood as a vector, whilst derivatives 
with respect to X are tensors; written out in detail, Equation (4.11, for 
example, has the form 

EiEj + 

**) From the relation x,-(l/e) it follows that we can segk the steady 
solution directly in the form of series with respeat to I/e. 
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The first equation determlnes the frequency n ; substituting the value 
found for Cl ln the second equation (5.1), we obtain y (*). 

When A =X,wehave ~~-0; hence also from (5.1) it follows that A,. 
&(A*), w,(A,) satisfy Equations (**I 

D(r) = 0 D(i) = 0,. a (D(‘). D(“) , a (0, k) = O 
From (5.1) and (5.2) we obtain 

where 

(5.2) 

Now from (2.14), (2.181, (4.1) and (5.3) we have 

C'D('-) / iTJo i?D(” / &a I I aD(" / a0 id / &I -I 
q=--e 

D,(” DA(i) * pm p(i) (5.4) 

The quantities A, u), k In the right-hand terms of (5.3) and (5.4) are 
UI,, (A,), & (A,) andzare found from Equations 

6. Let us consider the question of the nonunl ue choice of the te;;ys 
b, 0, and consequently also P (Equations (2.4), q2.5) and (2.10)). 
nonunlqueness Is connected with the fact that, for the actual sum 
ol:&J XI k (which Is obtained In the calculation of uniquely determines 
only the tensor 0 synrmetrlc with respect to J and k (If we add to It 
an arbitrary tensor which Is antlsymmetILlc with respect to ,j and k , the 
sum Is not changed). In order that the results obtained above should not 
depend upon the choice of the tensors b, 0, p, It Is necessary, as follows 
from (2.9), (2.13) and (2.141, that the equation D*JD k= D ‘D J should be 
satisfied under the condition UI = UI+ . The equation a 11 ind&ed be satls- 
fled, since D(UJ 
Identity holds [8 

= 0 and for an arbitrary determlnan i D the following 
: 

where N Is the parity of the permutation 

*) It can happen that In the expression for R there appear terms . y2 
(for example, for the ordinary equation z” - hx’ t z = 0 we obtain 
D=i --a- iah and according to (5.1) we have Cl =l- $ha , y I&h); these 
must be discarded, In order not to exceed the accuracy o Equations (5.1). 
**) The critical parameters (If they exist) for the other modes can llke- 
wise be found from (5.2). 

***) The derivatives (&,/ax), (dk,,/dA) when A - A, also are expressed In 
terms of D (the corresponding expressions are not reproduced for reagons 
of space economy). If Equations (1.1) are ordinary, then from the first 
equation (5.1) we obtain, taking account of (5.2) 

(do, / A), = 1 ao / &I I-” [n,c’) @DC’) / &a) + D$‘) @D(‘) / &)] 
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7. The condition of ‘smooth” excitation Is S,(‘) (k,) < 0; if it Is ful- 
filled, then for sufficiently slight supercrltlcallty the amplitudf, of the 
wave 1s small, and its shape is close to sinusoidal, since X, _ e *“. 

If 6’,($) (A,) >O, then the oscillations arise “ab- 
ruptly" . Let us suppose for slmpllclty that the 
state of the system Is determined by two parameters 
{;;B>.:) 

‘In the region 1) ‘and S 

%Ge 

Suppose that Y = 0 ,~~;~o~-~ &gment 

If the parameters slowly change along the 
1 , then jumps In amplitude of the estab- 

lished wave will take place at the Intersection of 
A the curve BC and a certain curve (the broken line 

In Fig.3) in the region where vn< 0 . When the 
point A lies In region 3, and”oscillatlons are 

initially absent, then they can be excited by an external perturbation If the 
amplitude of the perturbation Q exceeds a certain threshhold value Q 
From Equation T z T,, + s(l)9 i_ . . . = I-J It follows that IQ* 12 _ _ ~~ /so 1) f * 

when yo--0 . 

The type Of hysteresis of the jump In amplitude can be explained In the 
following way. In the region 3 the Increment y < 0 and therefore the fluc- 
tuating perturbations do not grow. 
yO=+o 

After cross& into region 1 we have 

of p ,’ 
but the. nonlinear Increment 7 = TO +&(i)~ increases with the growth 

since So(*) 
? 

0. Growth of the perturbations may be limited by non- 
linear terms of h gher order; since they are taken into account, the lncre- 
ment y will contain terms which are nonlinear with res and there 
pr; ihere may exist positive solutions of Equation y(q P 

ect to Q 
= 0 , even If 

0’. * * 
On deeper penetration Into the region ya> 0 (region 1 In Flg.3) the 

amplitude of the wave Increases, and the oscillations assume a relaxational 
character; moreover, there Is the possibility of jumps In the wave amplitude 
of a hysteresis type (examples of such jumps for systems described by the 
regular equations are to be found In 153). In addition, other modes may 
become excited; because of nonlinearity of the system oscillations of dlf- 
ferent modes may synchronize. Certain of the newly excited modes may have 
negative lncreminti y0 . Such modes are excited “abruptly’, and moreover 
the ‘external” perturbation for them is the wave excited at a smaller super- 
criticality. As usual, in the case of ‘abrupt” excitation, the region of 
emergence bf osclllatlbns of such modes must be wider than the reglow. of 
origin. 

If the oscillations appear smoothly, then we can always choose such a 
small supercriticality that the other modes are not excited (not only In the 
linear approximation, but even in the presence of an extabllshed oscillation 
of an unstable mode). This case was in fact considered above quantitatively 
(“) . 

8, All the results obtained above are valid for a system with a finite 
number of degrees of freedom, when Equations (1.1) are ordinary. 

Since Bquatlons (1.1) are real and are polynomials with respect to the 
differential operators, the coefficients of the equation D = 0 which is 
algebraic with respect to (f,w) are polynomials with respect to (--t k) with 
real coefficients. On replacing k by t-k) these pOlyIIOIfdalS become Complex 

conjugates, and therefore the following relationship is true: 

0 (- k) = - co* (k) (8.1) 

from which it follows that the Increment y(k) Is an eyen function, whilst 
the freauency 0 Is an odd function, and, generally speaking, discontinuous 
at k =-0 .(**) 

l ) The cited qualitative chart of th_ 0 dependence of oscillations on the 
supercrltlcallty clearly shows, for example, many lines of strata In gaseous 
dlscharges. 

l *j oh e relation (8.1) reflects the fact that the direction of propagation 
of a wave Is determined by the physical properties of the system, but not by 
choice of direction of the coordinate axis of reference. 



If a/ax= 0, k = 0, then to each oscillatory mode there corresond two 
roots UJ~ and UJ# such that We--uI,*. 

It can be shown that If the condition of asmooth' excitation is satisfied, 
then for sufficiently small superc~ltlcallty the steady solutlon of the ordl- 
nary equations Is stable (In particular, the solution X = X when X = Xr 
Is stable). 

9, In conclusion let us notice the character of the nonlinear effects 
taken into account. 

,!I'he first term In Ekpresslon (2.9) for p ’ is related to the effect of 
change of "background" under the Influence oPthe osclllatlon, &#X (only 
thlp effect Is taken Into account In the quasilinear method). The second 
Eerm lenrelated.to the effects of coherence. The third term describes the 

Interaction of the wave (only this effect Is taken Into account.ln 
tEFi:Fhods of Polncar6 and Van Der Pol in their theory of oscillations). 

Depending upon the form of the actual system, this or that nonlinear 
effect may be predominant; In the general case in finding the steady solu- 
tlon it Is necessary to take Into account all three effects. 

10, Here we shall Introduce two examples of finding steady solutions. 

Let us consider Equation 

- (z" + z) + x' (h + ax) + b (s’)? = 0 (10.1) 

The equlllbrlum solution IS X = 0 ; 
the perturbation x,eiot we obtain 

after linearizing with respect to 

Hence 
D s a* - 1 f ioh = 0 

‘r = ‘I&, &-2=1/1-h* 

The critical value of the parameter Is h = 0 ; the equilibrium 1s unsta- 
ble when h > 0 . To an accuracy of terms -h we have 0 = 1 . 

Let us seek the solution In the form 

x = Z0 + x_ = x0 + x Q0 (v + 0, 8 = ot) 
Y 

After substituting for r in Equation (10.1) we obtain 

@,x- 50 + 260%,x_, = 0 

@, 3 (02 - 1) x1 + io (hx, f c~x~x_~ + nxoxI) f 4bo*~,x_~ = 0 

aa E (40~ - 1) x2 + ia, (2hx, f axI*) - bo*x~ = 0 

(10.2) 

(10.3) 

(10.4) 

In the coefficients In the nonlinear terms we can at once set h = 0 , 
uJ=l. From (10.2) and (10.4) we find that 

6~ = x0 = 2bx1x_1, x2 = ‘is (B - ia) x1??; 

substituting these expressions In (10.3), we obtain 

OD, / x1 G D + q (‘/+a* + 4!&2 + iab) = 0. 

Hence, taking account of the 
h=O, we obtain q -= - 7 

ct that al/au, = 2 and that an/ah = 0,when 
'SfiT=c-; d”b, 

of existence of the solution Is 
0 = 1 _ lleq ($ + b”-). The condition 

. 
Equation (1C.l) after the substitution x = yy reduces to the form 

y" -i- y = 7 (2~’ +- ayy’ -j- b (y’)?) (10.5) 

The equation of the form 
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Y” + Y = rf (Yt Y’, r) (10.6) 
where y is a small parameter, 
and Poincar6 [73 . 

can be solved by the methods of Van Der Pol 

method 
Setting y = K co8 t we have according to the first 

A”,” 
K’ = rA (K), A (K)= - & \ f (K cos u, - K sin a, 0) sin udu (10.7) 

0 

Applying (10.7) to (10.5), we obtain 

R’ = yK (10.8) 

whence So~lows the Incorrect conclusion that Equation (10.5) has no steady 
solution except the equilibrium solution K = 0 . 

Equation (10.5) can be solved by the method of averaging [5]. For this 
we set y* = e In Equation (10.5) and introduce the new unknowns y= r cos (p, 
I = P sin rp . Expressing r* and cp’ 
the ratio r’/rp* , 

In terms of r and cp and taking 
we obtain an equation of the form dr /dq = ?‘p (r, 9, 7); 

Solving this by the method of averaging, we obtain, ln the second approxima- 
tion dr / dp = yr (i + lfa-&r5) with respect to y . 

The steady solution exists IS al< 0 , and has the form 9 =- 2/yab ; If 
we return to the variable x and write down the solution In complex form, 
then we arrive at the expression for q obtained above. 

The example considered Is typical in the theory of osclllatlons. The sim- 
plest systems in .lhich there exist steady oscillations which are almost 
harmonic, are described by Equations 171 

2” = g (z, r’) (10.9) 

This equation can be reduced to the form 
t 
10.6). The equilibrium solution 

of Equation (10.9) is Sound from Equation 0 x,0) 

1 

= 0 . We shall assum;s;h$t 
= 0 (this can always be achieved by the substitution x = x + x* - 

ng that the amplitude of the oscillation is small, let us expand 16.9) in t 
a series with respect to x and x’ 

Here the derivatives of 
R 

are taken when .X - x’ - 0 . Perturbations of 
the equilibrium state have t e character of oscillations if for A = X,, (when 
ag / 8~’ s 2~ = 0) the inequality ag / ax 3 - oa < 0 is satisfied. We shall 
assume that ~1 - 1 (this can always be achieved by the substitution t =w-It*); 
after the substitution x - yy we obtain from (10.10) (the Increment y is 
assumed small) 

Y” $- y = r (2Y’ + gn) + zl ?-‘g,, g, = +(Y;+Y$)g (10.11) 
n>2 

The abbreviated equation (10.7) for the starting equation (10.11) has the 
form (10.8), since the quadratic terms appearing in ga do not give contri- 
butions to the expression ,4(K) . 

In order to solve Equation (10.11) by the method of aver ing, it is 
necessary to revert to the stcond (or higher) the equation of 
the first approximation coincides with the equation obtained by the method 
of Van Der Pol, and has the form (10.8)). 

10.9) does not change on replacing x by (- r), i.e. 
the terms with even n are tiSSiZU from 

in this &tlcular case we can make the substitution 
x - fiY and obtain 

Y” + Y = r (2Y’ + g3) + x ?g,4+1 
k>l 

(10.12) 

with the help of (10.7) we find the steady amplitude 
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If the expression in brackets is negative. 

Equations (10.9) not changing with the substitution of 3~ by (- x) are 
remarkable In that their periodic solutions (if they exist) do not contain 
the even harmonics. Here we show only that the even harmonics are absent 
from oscillations of sufficiently small amplitude, when the expansion (10.10) 
Is valid (not containing terms with even n in the specified case). Let us 
substitute In (10.10) the series 

Then the differential d’q gives a contribution to the expression @,v 
in the form of the terms cx,; . - Xvn, where v1 + . . . -j- Y, = v, and c IS a 
certain coefficient depending on u and h , but not on r . If v is even 
but n is odd, then among the members Is at least one even num- 
ber. Therefore for even values of v t$‘&i6t&ns @ = 0 will be rigor- 
ously satisfied if we set all the even harmonics equal%0 zero. 

Let us consider the equation (“) 

xc” + x = x’ (h - x2) (10.13) 

The dispersion relation D = 0 was considered in the first example. We 
shall seek the solution in the’form 

Cc=le+ 2 Xp (v # 0, 8 = ot) 

Y 

In Equation (10.13) there are no quadratic terms in n , therefore from 
the equations 0,, = 6, @s = 0 we find i&v = zg = 0, zs = 0. For @I we have 
QD, z 21 (D - ioq) = 0 (q = X1X-l). 

Hence 

P = (- ic+_ = - i, S = - Ita i, q = h, 0 = 1, ao = 0 

For the calculation of higher harmonics xv we need to construct the 
expression for Qv In accordance with Equations (2.2) and (3.1). Integra- 
tion of the linear terms is easily accomplished. 

Let us first write down the nonlinear term In the form xsx’ = l/s (9’; the 
integral 

2n 

1 
d0 

7%” 
= Xnp - 

s 2n 
0 P 

is calculated after first of all raising the series for n to the degree 
according to the binomial rule 

I,, = n!C 
(““,P’ (““p x=~- . ..- 
b,)! b,l)l 

(10.14) 

Here the sum is taken over all the numbers v (among which none are the 
same) and the positive numbers nv, satisfying the conditions 

nv, + - . . + nv8 = 78, vp,, +... + v,nV8 = n 

In the case under consideration n = 3 . NOW we have 

Q,C((o%s- 1) xv + iov (hx, - 22’) = 0 

e substitution x = JFin* reduces this equation to the equation of Van 
. 
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’ differs from the sum In (10.14) in that the numbers Y , according 
Satisfy the supplementary condition 1 Q vr, . . ., v, < v. The coef- 

ficients In the expre~sliops @, must be taken when X - & (in the given 
case when h - 0, ; therefore 

Equation (10.13) 
therefore we can at 
harmonics we obtain 

2” = 2’ 2iv / (v2 - 1) (10.15) 

is not changed by the substitutfon of r by (-X) and 
once set the even harmoniaa equal to zero. For the odd 
from (10.14) and (10.15) 

The author thanks A.A. Vedenov for guidance and M.A. Leontovich for biS- 

cussion of this paper. 
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